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Interconectividad y contagio en entidades y
conglomerados banco-aseguradores chilenos??

José Fuentes?, Julio Deride*

Resumen

Este documento de trabajo investiga la interconexién y los mecanismos de contagio dentro de los
conglomerados banco-aseguradores chilenos. Analizamos la importancia sistémica mediante el
anadlisis de redes y simulaciones de contagios en cascadas, utilizando datos regulatorios
combinados de los silos, con frecuencia trimestral desde el primer trimestre de 2022 hasta el
primer trimestre de 2024. Proponemos un algoritmo de contagio que incluye una versién base,
centrada en impactos directos por exposiciones de incumplimiento, y una versiéon ampliada que
incorpora mecanismos de recuperacion y de efectos indirectos de mercado, ademas de presentar
simulaciones de contagio. Nuestro enfoque mejora el andlisis tradicional de exposiciones al
incorporar efectos iterativos. Ademas, establecemos las bases para futuros desarrollos en esta
linea de investigacion. Un hallazgo clave de este trabajo es que diferentes enfoques y matices
tienen una capacidad similar para identificar nodos clave en el sistema financiero chileno.

Abstract

This working paper investigates interconnectedness and contagion mechanisms within Chilean
bank-insurer conglomerates. We analyze systemic importance through network analysis and
cascading contagion simulations, using combined regulatory data from silos, with quarterly
frequency from Q1 2022 to Q1 2024. We propose a contagion algorithm that includes a baseline
version, focusing on direct impacts from default exposures, and an extended version that
incorporates recovery and market spillover mechanisms, as well as presenting contagion
simulations. Our approach enhances traditional exposure analysis by incorporating iterative
effects. In addition, we lay the groundwork for future developments in this line of research. A key
finding of this work is that different approaches and nuances have a similar ability to identify key
nodes in the Chilean financial system.

1 Las opiniones emitidas en este trabajo, y sus errores y omisiones, son de exclusiva responsabilidad de los
autores y no necesariamente reflejan la vision de la institucién. Se agradecen los comentarios, consejos y
sugerencias del referato interno, asi como también los de otros participantes en seminarios internos.

2 Los autores expresan su agradecimiento a Eric Zepeda por su trabajo de investigacion previo, el cual fue
presentado como memoria de titulacion en 2024. También se expresan agradecimientos a la Divisién de
Conglomerados Financieros de la CMF, y a Ivan Abarca por sus comentarios, sugerencias y apoyo.

3 A la fecha de cierre de esta version del documento: Comisidn para el Mercado Financiero.

4 Facultad de Ingenieria y Ciencias, Universidad Adolfo Ibafiez, julio.deride@uai.cl
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I. Introduccion

El estudio de la interconexion entre instituciones financieras, el riesgo
sistémico y las dinamicas de contagio, especialmente en el sector
bancario, es un area de investigacién ampliamente documentada y
aplicada en los ambitos académico, regulador y de supervision.

Comprender estos fendmenos es fundamental para identificar como las
disrupciones en una parte del sistema financiero pueden propagarse,
afectando a otras entidades y generando riesgos sistémicos con
potenciales consecuencias graves para la estabilidad financiera vy
econdmica de un pais o una regidon. Los hallazgos en esta area
proporcionan informacion clave para guiar los esfuerzos de supervisiéon
por parte de las agencias regulatorias nacionales, ayudando a mitigar
vulnerabilidades y a disefiar estrategias efectivas de regulacién.

Este trabajo se centra en los conglomerados banco-aseguradores
chilenos, para los cuales elaboramos una base de datos inédita, obtenida
a partir de datos proporcionados por fuentes regulatorias.

En nuestra revision de la literatura identificamos tres enfoques principales
para el estudio de la interconexidon en redes financieras. El primero, que
denominaremos “enfoque econométrico”, evalla el riesgo de contagio a
través de variables macroecondémicas e indicadores especificos de la
industria (Pesaran, 2004) (Chiang, Jeon, & Li, 2007) (Diebold & Yilmaz,
2014) (Adrian & Brunnermeier, 2016) (Ahelegbey, Giudici, & Hashem,
2021). Estos estudios utilizan modelos econométricos para identificar y
cuantificar las relaciones entre diferentes variables econdmicas vy
financieras, estimando el impacto de posibles perturbaciones en el
sistema.

El segundo enfoque, denominado “analisis de redes”, se centra en
estudiar la estructura de la red financiera, o topologia, utilizando
herramientas de Teoria de Grafos. Este enfoque modela la red financiera
utilizando nodos y enlaces, que representan a las instituciones y sus
obligaciones, respectivamente. Se analizan aspectos como los grados de
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conexion, los conjuntos de vecindarios y la fuerza de los enlaces
(Eisenberg & Noe, 2001) (Langfield & Soramaki, 2016) (Bravo-Benitez,
Alexandrova-Kabadjova, & Martinez-Jaramillo, 2016) (European Systemic
Risk Board, 2017). Adicionalmente, se examina cdmo la estructura de las
interconexiones entre las instituciones financieras influye en la
propagacion del riesgo. Para ello, se utilizan medidas como la centralidad,
gue permiten identificar instituciones sistémicamente importantes y
puntos de vulnerabilidad en la red.

El tercero, “enfoque de balance”, examina cdmo una disrupcién en la red
o shock inicial (por ejemplo, el default de uno de los nodos), puede
propagarse al resto de la red financiera. Este enfoque considera tanto la
estructura de las interconexiones de la red como la capacidad de los
actores para absorber pérdidas (Steinbacher, Steinbacher, & Steinbacher,
2014) (Nirei, Caballero, & Sushko, 2015) (Sun & Chan-Lau, 2017).
Mediante simulaciones, se evalua como las disrupciones financieras se
transmiten a través de los balances de las instituciones, considerando
tanto los impactos directos como los efectos de propagacién a lo largo del
tiempo.

Este trabajo aplica los dos ultimos enfoques mencionados para analizar a
los conglomerados que operan en los sectores bancario y de seguros en
Chile. Aunque las entidades bancarias y aseguradoras en Chile tienen
limites de exposicion definidos por ley, la concentracién de riesgo dentro
de los conglomerados financieros no esta regulada, debido a la falta de
marcos legales complementarios. Este vacio permite que los
conglomerados financieros puedan estar, en conjunto, expuestos a un
riesgo mayor, que sus componentes individuales, frente a determinadas
contrapartes individuales o grupos empresariales.

Este estudio ofrece aportes significativos para la regulacién y supervision
financiera. Su principal contribucién radica en la construccién de una base
de datos inédita, fruto de la integracion y homologacién de diversas
fuentes regulatorias, lo cual permite a la CMF comprender con mayor
profundidad la interconexién y las potenciales vulnerabilidades del

sistema financiero chileno.
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En particular, el analisis sistémico se centra en los riesgos derivados de
las interacciones entre instituciones bancarias y de seguros. Al comparar
los resultados de las metodologias aplicadas, se evidencian patrones
comunes que facilitan la identificacion de areas criticas, proporcionando
asi insumos clave para el disefio de estrategias de regulacion vy
supervisidon mas efectivas.

El resto de este documento se organiza de la siguiente manera: en la
seccion II se describe la construccidon de la base de datos y los objetos
creados para la implementacion de los algoritmos propuestos. La seccidn
III presenta el analisis de redes sobre la base de datos construida, en
funcion de diferentes métricas de centralidad. La seccion IV introduce el
enfoque de balance, detallando sus resultados y sus posibles aplicaciones
futuras. En la seccion V se resumen los pasos siguientes, identificados a
partir de este estudio. Finalmente, las conclusiones se exponen en la
seccion VI.

II. Construccion de la Base de Datos

Utilizamos datos proporcionados por la Comision para el Mercado
Financiero (CMF) de Chile bajo un acuerdo de investigacidon. Estos
comprenden las carteras de inversién de bancos y compafiias de seguros
con una frecuencia trimestral, abarcando desde el primer trimestre de
2022 hasta el primer trimestre de 2024.

Dado que los datos provienen de diferentes fuentes, es necesario realizar
un proceso de estandarizacidn para asegurar la consistencia y
comparabilidad. Ademas, se tratan de manera andénima, utilizando un
numero identificador que impide identificar los nombres propios o la
composicion de cada uno de los nodos.

Para efectos de este estudio, un agente puede ser una entidad individual
(banco o compaiia de seguros), o un conglomerado financiero compuesto



por las entidades® bajo un controlador comun. En la Seccidon III
caracterizaremos a cada uno de los agentes como un “nodo” de la red
financiera.

Se construye una matriz de exposicion L,, de dimensién n x n, para cada
trimestre t, como corte transversal. En estas matrices, las filas
representan los activos y las columnas representan los pasivos de los n
nodos. La matriz incluye las posiciones de los bancos basadas en los
archivos regulatorios P40 y C11 del Manual de Sistemas de Informacién
de Bancos, que abarca créditos directos, instrumentos de renta fija y
renta variable. Para el sector de seguros, la informacién proviene de las
instrucciones contenidas en la Circular 1.835.

El capital requerido por conglomerado se representa a través del vector
RE,, el cual se obtiene como la suma de los requerimientos patrimoniales
totales de los sectores bancario y de seguros. La fuente de esta
informacion es el archivo regulatorio RO1 para los bancos y las notas de
solvencia en los estados financieros de las compafiias de seguros.

El capital disponible por conglomerado estad representado por el vector
AE,, que se calcula como la suma de los fondos propios disponibles segun
las normas sectoriales respectivas®. En los bancos, esto incluye
instrumentos AT1 y T2, mientras que en las compafiias de seguros se
deducen los activos no efectivos. La fuente de esta informacion es la
misma que la del vector de capital requerido.

La tabla 1 da cuenta de algunas estadisticas descriptivas de los nodos. Al
primer trimestre de 2024, los datos capturan 58 nodos con activos por
aproximadamente MMCLP 17.074.232. En el Anexo A se presenta una

> Como parte de los bancos, se consideran ademas las filiales corredoras de bolsa y
agentes de valores.

6 Este calculo no elimina la posibilidad de doble uso de capital aguas arriba, en la matriz
del conglomerado, fendmeno abordado por las mejores practicas internacionales (The
Joint Forum on Financial Conglomerates, 2012)
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visualizacion de la red, construida a partir de la matriz de exposiciones.
En el Anexo B se detallan algunas caracteristicas de los nodos.

Tabla 1. Estadisticas descriptivas de la suma de las posiciones por nodo en 2024 Q1. Cifras en
millones de pesos. Elaboracion propia.

Medida Pasivos Activos
Media 294,383 294,383
Desviacion estandar 706.962 732.245
Minimo 0 0
Percentil 25 1 5.382
Mediana 10 18.808
Percentil 75 32.551 213.679
Maximo 2.835.762 | 4.917.200
Suma 17.074.232 | 17.074.232
Cuenta 58 58

III. Caracterizacidon de los nodos de la red

El analisis de centralidad’” de los nodos es una de las maneras para
comprender la estructura y dinamica de las redes financieras.
Construiremos medidas o métricas de centralidad, permitiendo identificar
los nodos de mayor influencia en la red y, por ende, aquellos que podrian
representar un riesgo sistémico significativo en caso de estrés o default.
A continuacion, presentamos las distintas medidas de centralidad
utilizadas en nuestros analisis?.

A. Grado de Entrada y Salida (In-Degree y Out-Degree)

Grado de Entrada (In-Degree): Mide el numero de conexiones
entrantes que tiene un nodo; para efectos de este trabajo, cuantos otros

’La centralidad, en este contexto, es una medida cuantitativa que determina la
importancia o influencia de un nodo dentro de la estructura de interconexiones del
mercado. Esta medida no es un atributo interno de la institucidn (como su solvencia o
su gestién de riesgos), sino un valor estructural que depende de su patrén de conexiones
con las demas.

8 Los calculos de esta seccion han sido facilitados en gran medida por la libreria igraph,
disponible para R a través de CRAN.
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nodos estan expuestos al nodo en cuestién. En términos financieros,
representa la cantidad de entidades que le prestan al nodo analizado. Para
el i-ésimo nodo, denotaremos el grado de entrada como k;,(i).

Grado de Salida (Out-Degree): Mide el nUmero de conexiones salientes
desde un nodo; para efectos de este trabajo, cuantos otros nodos estan
endeudados con el nodo analizado. Representa la cantidad de entidades
a las que el nodo ha otorgado créditos (activos). Para el i-ésimo nodo,
denotaremos el grado de salida como k. (i).

La ilustracion 1 muestra de manera grafica el significado de cada término.
Estas medidas de grado son fundamentales, ya que proporcionan una
visidn elemental, pero esencial de la conectividad de un nodo dentro de
la red. Un nodo con grado de entrada alto indica una entidad a la que
estan expuestos muchos otros nodos; mientras que un alto grado de
salida sugiere que ese nodo esta expuesto a muchos otros. Sin embargo,
la debilidad de estas métricas radica en que se enfocan en medir la
cantidad de conexiones, sin considerar su magnitud representada en el
monto total expuesto en la matriz L.

Activo

Conglomerado

I|2l'

Conglomerado ™1"

Out-degree

Bancoy Cia. De
(nodo es acreedor de n otros nodos)

filiales Seguros
locales Generales

Cia. De
Seguros de
Gtia. Y
Crédito

Cia. De
Seguros de
Vida

Pasivo Conglomerado

w 3"

In-degree

(nodo es deudor de n otros nodos)

Ilustracién 1. Composicién de los nodos y sus grados de conexion.



B. Centralidad del Vector Propio (Eigenvector)

La centralidad del vector propio (en adelante, centralidad eigenvector) no
solo considera el numero de conexiones de un nodo, sino también el
monto y la relevancia de los nodos a los que esta vinculado. De esta
forma, la matriz de exposiciones L, construida con los datos, puede
interpretarse también como una matriz de adyacencia ponderada, donde
cada entrada representa tanto la existencia como la intensidad de las
conexiones entre nodos. Un nodo tendra mayor centralidad eigenvector
si esta conectado a otros nodos con alta centralidad, lo que convierte este
en un problema recursivo.

Esta medida se obtiene calculando el vector propio (eigenvector)
x, correspondiente al mayor valor propio (eigenvalue) A, del conjunto de
soluciones del espacio propio sobre la matriz de adyacencia. Es decir, se
resuelve el siguiente sistema para valores de x y A:

Lx = Ax

Para efectos de este trabajo, el resultado del eigenvector se normaliza,
donde 1 representa la maxima centralidad y 0 la menor.

En una red financiera, un conglomerado con alta centralidad eigenvector
tiene influencia significativa, tanto directa como indirectamente, a través
de sus conexiones.

Es importante notar que esta métrica, al igual que las dos siguientes
tratadas en este documento, incorpora la direccionalidad de los vinculos.
Para integrar ambas direcciones en una sola métrica, se decidié calcular
las centralidades a partir de la matriz original (centralidad del pasivo) y
de la matriz traspuesta (centralidad del activo). Ambas meétricas se
combinan mediante una semisuma, lo que entrega un indice Unico y
conciso de centralidad de los nodos (centralidad promedio). De este
modo, se otorga la misma relevancia a la “centralidad” desde el punto de
vista tanto de las deudas como de las acreencias.



Centralidad de los nodos al 2024 Q1
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Gréfico 1. Centralidad eigenvector (promedio activos y pasivos), y grados de conexion
asociados. Tanto el color como el tamafio de la burbuja indican el valor de la centralidad.
Informacion al primer trimestre de 2024.

El grafico 1 presenta una comparacion entre los grados de entrada, de
salida y el resultado del promedio de las centralidades eigenvector
(activos y pasivos). De aquél, se puede desprender una relacion positiva
entre las métricas, y se refuerza la importancia que tienen las magnitudes
de conexion en esta red: el nodo 64 no es necesariamente el mas
conectado en cuanto a grados, pero las magnitudes de sus conexiones la
vuelven mas importante que el resto si se mide via eigenvector.

C. Centralidad PageRank

Utilizamos PageRank como una medida alternativa de centralidad de los
nodos. Desarrollado originalmente para clasificar paginas web por
relevancia, se puede entender de manera analoga a las redes financieras.

En principio, cada flujo puede interpretarse como un “voto” proveniente
de un nodo hacia otro. La relevancia total de un nodo es funcién de la
importancia relativa depositada por otros nodos. Tras aquello, cada nodo

tiene un grado de importancia actualizada en funcion de los votos
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recibidos. El algoritmo itera® hasta llegar a un punto de convergencia,
donde la variacion de la importancia de cada nodo no \varia
significativamente.

La centralidad de PageRank para un nodo i se calcula de la siguiente
manera (Langville & Meyer, 2006):
PR(i) 17d 4 PR(}) o
l)=— o,
n Zkestjk
JES;

donde:

e d es el factor de amortiguaciéonio,

e n es el numero total de nodos,

e wj; es el peso del enlace dirigido desde el nodo j al nodo i,

e S; es el conjunto de nodos que tienen enlaces hacia el nodo i,

e §; es el conjunto de nodos hacia los cuales el nodo j tiene enlaces,
o Zkesj wj, €s la suma de los pesos de todos los enlaces salientes del

nodo j.

El grafico 2 muestra una comparativa similar a la del grafico 1, pero
utilizando las medidas de centralidad PageRank. En general, identifican
los mismos nodos como aquellos importantes, pero con algunos matices
en ciertos nodos. Un ejemplo de contraste seria el nodo 7.

° La iteracion es necesaria ya que, aunque los flujos sean deterministicos, la importancia
de cada nodo se define recursivamente en funcién de la importancia de otros nodos. El
método iterativo (método de potencias) es la forma estandar de resolver este sistema
de punto fijo, convergiendo hacia el vector propio asociado al valor propio dominante de
la matriz de transicién.

10 Generalmente establecido en 0,85 (Page, Brin, Motwani, & Winograd, 1999); en
nuestras mediciones se utiliza 1 para eliminar los saltos aleatorios.
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Centralidad de los nodos al 2024 Q1
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Gréfico 2. Centralidad PageRank (promedio activos y pasivos), y grados de conexion asociados.
Tanto el color como el tamafo de la burbuja indican el valor de la centralidad. Informacion al

primer trimestre de 2024.

D. DebtRank

DebtRank es una medida mas especifica para redes de entidades
financieras (Bardoscia, Battiston, Caccioli, & Caldarelli, 2015). Calcula el
impacto potencial que tendria el default de un nodo sobre toda la red,
considerando la propagacion del shock financiero. Incorpora informacion
adicional a lo descrito en las métricas anteriores, especificamente, el

patrimonio disponible de cada nodo?!l.

El calculo de la métrica se realiza en forma iterativa. Se comienza desde
una matriz de apalancamientos inter-nodos A(0), y el conjunto de nodos

11 | os autores, originalmente centrados en el estudio de las redes financieras, utilizan
vectores de capital T1. En este estudio, el patrimonio disponible es un analogo mas

cercano al patrimonio efectivo.
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activos iniciales, A(0), que incluye a todas las instituciones de la red. Para
la propagacion en el instante t, la matriz de apalancamientos A(t) se
actualiza de la siguiente forma:
A;;(0)
——sijEA(t—1),
A (t) =1 E;(0) J ( )
0sijg A(t—1),

donde:

e A;;(0) es la acreencia del nodo i con el deudor j en el estado inicial,

e A es el conjunto de todos los nodos activos, es decir, que no estan
en default,

e FE;(0) es el patrimonio disponible del nodo en el estado inicial.

A partir de esta matriz, calculamos la pérdida relativa acumulada de
patrimonio para el nodo i en el momento t, denominada h;(t) de la
siguiente manera:

N
hi(t + 1) = min | 1, hy(£) + ZAij(t)[hj(t) — (=1
=1

El proceso iterativo se continla propagando hasta que no haya cambios
significativos en las pérdidas h;(t) entre dos iteraciones consecutivas. Se
calcula el impacto total como una proporcion de la suma de los
patrimonios disponibles del sistema??.

El grafico 3 replica la manera de representar los nodos de los otros dos
graficos anteriores. Se aprecia que, si bien la identificacién de los nodos
centrales son similares, el valor que entrega la este método es menos
variable, con unos pocos nodos marcados con una alta centralidad, con
un resto con valores cercanos a cero.

12 Utilizamos la libreria NetworkRiskMeasures de R (Cinelli, 2017).
12
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Gréfico 3. Estrés adicional generado por algoritmo DebtRank, y grados de conexion asociados.
Tanto el color como el tamafo de la burbuja indican el valor de la centralidad. Informacion al
primer trimestre de 2024.

E. Resultados de las métricas de centralidad

Hemos aplicado las diversas medidas de centralidad en cada periodo
sobre los nodos que conforman la red. Los resultados destacan aquellos
nodos que pertenecen al cuartil superior de la centralidad del vector
propio promedio. Estos, en definitiva, serian los nodos mas “centrales” de
la red financiera estudiada. En las tablas 2 y 3, se incluyen dos
temporalidades relevantes: el ultimo corte de datos disponible (2024 Q1),
y el promedio de los 9 trimestres que abarcan el histérico de este estudio.

Es util distinguir entre tres tipos de métricas: las centradas en pasivos,
las centradas en activos y las métricas “promedio” que combinan ambas
perspectivas. Cada tipo de métrica enfatiza distintos nodos por sobre
otros, con resultados diversos. Por ejemplo, un nodo considerado central
en la medida del vector propio del pasivo no necesariamente sera un nodo
igualmente central si se mide con PageRank del pasivo o DebtRank.
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Notemos que, al comparar los resultados del corte 2024 Q1 con el
promedio, los subconjuntos del sistema financiero de mayor relevancia
son mayormente similares entre ambas tablas, aunque difieren en el
orden de magnitud de la centralidad y la posicion relativa entre ellas.

Eigenvector Eigenvector Eigenvector PageR_ank PageR_ank PageRar!k DebtRank In Degree Out Degree
. ) N pasivos activos promedio
pasivos activos promedio
Nodo |-

64 0,29 1,00 0,64 0,12 0,17 0,15 0,10 42 13
7 1,00 0,08 0,54 0,13 0,03 0,08 0,10 40 14
63 0,41 0,48 0,45 0,19 0,10 0,14 0,10 45 25
9 0,54 0,31 0,42 0,09 0,11 0,10 0,12 42 23
10 0,76 0,01 0,39 0,10 0,11 0,11 0,11 41 27
30 0,12 0,62 0,37 0,04 0,08 0,06 0,03 26 15
6 0,69 0,01 0,35 0,13 0,00 0,07 0,11 41 4
1 0,00 0,60 0,30 0,00 0,06 0,03 0,00 3 9
22 0,17 0,43 0,30 0,03 0,06 0,04 0,04 37 13
2 0,28 0,19 0,24 0,06 0,03 0,05 0,05 40 13
31 0,13 0,22 0,18 0,04 0,03 0,04 0,05 36 12
24 0,03 0,28 0,16 0,01 0,03 0,02 0,00 4 12
3 0,02 0,28 0,15 0,00 0,04 0,02 0,00 3 12
28 0,00 0,18 0,09 0,00 0,02 0,01 0,00 1 12

Tabla 2. Resultados del cuartil mas central de la red, a 2024-Q1. Resultados ordenados por
centralidad eigenvector promedio. Elaboracion propia.

Eigenvector Eigenvector Eigenvector PageR_ank PageR_ank PageRar!k DebtRank In Degree Out Degree
) . N pasivos activos promedio
pasivos activos promedio
Nodo |-

64 0,35 1,00 0,68 0,09 0,15 0,12 0,12 46 13
9 0,60 0,55 0,57 0,10 0,12 0,11 0,14 46 21
7 1,00 0,13 0,56 0,13 0,04 0,08 0,11 43 15

63 0,43 0,53 0,48 0,11 0,10 0,11 0,11 46 25
30 0,15 0,69 0,42 0,05 0,08 0,07 0,03 29 14
6 0,71 0,03 0,37 0,11 0,01 0,06 0,12 41 8
10 0,71 0,03 0,37 0,10 0,10 0,10 0,12 43 30
22 0,22 0,47 0,35 0,04 0,07 0,05 0,05 41 15
1 0,00 0,61 0,31 0,00 0,06 0,03 0,00 3 9
2 0,25 0,19 0,22 0,09 0,03 0,06 0,06 42 14
31 0,21 0,17 0,19 0,06 0,02 0,04 0,06 35 12
12 0,30 0,08 0,19 0,07 0,01 0,04 0,03 29 11
24 0,03 0,31 0,17 0,01 0,03 0,02 0,00 5 12

Tabla 3. Resultados del cuartil mas central de la red, promedios de las observaciones trimestrales
entre 2022-Q1 a 2024-Q1. Resultados ordenados por centralidad eigenvector promedio.
Elaboracion propia.

Finalmente, interesa analizar la consistencia de los nodos centrales
detectados para las métricas propuestas. Para esto, calculamos la
correlacion lineal simple entre éstas. La matriz de correlacién entre las
métricas se presenta en la tabla 4. Todas las medidas presentan
correlaciones positivas de distinta intensidad, lo que sugiere un grado de
similitud en la identificacion de nodos como centrales. En particular, el
14



Out Degree tiene las correlaciones mas bajas con las demas métricas, lo
gue indica la importancia de los montos asociados a los vinculos mas alla
de la cantidad de conexiones. De manera similar, las centralidades del
activo (eigenvector y PageRank) también tienden a mostrar correlaciones
mas débiles respecto de las otras meétricas, especialmente en
comparacién con las centradas en pasivos, que presentan mayor
coherencia entre si (eigenvector, PageRank y DebtRank). Las
correlaciones mas fuertes se encuentran entre las métricas de
centralidades promedio, lo que sugiere una mayor estabilidad al combinar
perspectivas de activos y pasivos.

Eigenvector Eigenvector Eigenvector PageRank PageRank PageRank

pasivos activos promedio pasivos activos promedio  DebtRank In Degree Out Degree
Eigenvector pasivos 1,00
Eigenvector activos 1,00
Eigenvector promedio 0,83 0,81 1,00
PageRank pasivos 0,92 0,47 0,86 1,00
PageRank activos 0,59 0,88 0,89 0,67 1,00
PageRank promedio 0,84 0,73 0,96 0,92 0,90 1,00
DebtRank 0,91 0,54 0,89 0,93 0,77 0,93 1,00
In Degree 0,84 0,59 0,88 0,91 0,75 0,91 0,93 1,00
Out Degree 0,54 0,44 0,60 0,57 0,65 0,66 0,59 0,59 1,00

Tabla 4. Matriz de correlacion entre métricas de centralidad.

IV. Algoritmo de contagio
A. Descripcion y alcance

Si bien un analisis inicial de las exposiciones agregadas y la solvencia de
los nodos proporciona una visidon general de la vulnerabilidad de la red,
proponemos profundizar en el analisis con el desarrollo de un algoritmo
de contagio financiero. Este algoritmo simula la propagacién de un shock
a través de la red, considerando las interconexiones y los efectos cascada
(de segunda vuelta y superiores) que pueden surgir.

Es importante distinguir este algoritmo de contagio de la métrica
DebtRank presentada en la seccidon anterior. Aunque ambos enfoques son
iterativos y parten de datos similares, difieren fundamentalmente en su
objetivo y output. DebtRank calcula un indice de estrés relativo (entre 0
y 1) para cada nodo, trabajando con una matriz de pesos relativos

15



(exposiciones normalizadas por capital disponible). Este indice mide la
importancia sistémica de cada nodo en términos del estrés adicional que
puede generar en el sistema. En contraste, nuestro algoritmo de contagio
simula pérdidas monetarias absolutas (en MMCLP) y estados binarios de
default (un nodo esta en incumplimiento o no lo esta), trabajando con la
matriz de exposiciones y vectores de capital separados. Esto permite
cuantificar el dafio concreto, tanto en términos de pérdidas totales, como
de numero de nodos que caen, que causaria el incumplimiento de un nodo
especifico. Adicionalmente, la versién ampliada del algoritmo incorpora
mecanismos que el DebtRank no considera: recuperaciones de crédito
(Paso 3) que reducen las pérdidas netas, y efectos indirectos de mercado
(Paso 4) que amplifican las pérdidas a través de ventas forzadas y
depreciacién de activos.

Nuestro algoritmo de contagio financiero se basa en la simulacién de los
impactos potenciales sobre la solvencia de cada nodo, en el caso de
incumplimiento de uno o varios de los nodos de la red, los que se
propagan en funcion de umbrales a través de la red financiera y su
estructura de acreencias.

A diferencia de la construccion de las métricas de centralidad de red
propuestas en la seccion anterior, que tienen una naturaleza mas bien
estatica, el algoritmo nos permite simular el incumplimiento de un nodo?3,
y su correspondiente dinamica de propagacion. La ventaja de este
enfoque radica en la posibilidad de efectos indirectos, de segunda vuelta
y posteriores, los cuales son claramente identificables. Estos efectos se
pueden visualizar en la Ilustracion 3.

13 Con todo, el algoritmo desarrollado admite casos donde mas de un nodo cae en
incumplimiento simultdneamente.
16
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Para la definicion y clasificacion del estado de solvencia utilizada en
nuestro algoritmo, notemos que los requerimientos de capital no
necesariamente reflejan un default que implique liquidacion forzada en el
contexto regulatorio de bancos y aseguradoras. Por esto, hemos adoptado
un enfoque mas “acido” en nuestro algoritmo de contagio. En lugar de
centrarnos en un umbral de incumplimiento rigido, utilizamos conceptos
como ‘“incumplimiento normativo” y “pérdida potencial”. Esta
aproximacion de todas formas nos permite capturar dinamica de contagio
en la red financiera y evaluar la relevancia de distintas exposiciones.

B. Fases del algoritmo

17



El algoritmo de contagio se desarrolla en varias fases, detalladas en la
Ilustracién 4.

1. Carga de datos (AE, RE, L) y seleccién

de default inicial para un periodo fijo

—

Ic;

2. Caélculo de impacto directo por
exposiciones en default

Aplicacion iterativa por:

IR 3. Célculo de recuperaciones (tasa fija
t sobre IC;)

4. Calculo de impacto indirecto de
1F; mercado (tasa fija por turno sobre L) :
o

J

Ilustracion 3. Descripcion por pasos del algoritmo de contagio. IC;:
Impacto por efecto de crédito, IR;: Impacto por recuperaciones, IF;:
Impacto por efecto indirecto de mercado, I;: Impacto total (suma
de las tres anteriores), AE,: Patrimonio disponible en periodo t, RE,:
Patrimonio requerido en periodo t.

L= - . A
I = IC,— IR + IF; . Perfodo

—== . Conglomerado (default inicial)
+ Recuperaciones ([0%, 100%] * IC;)
« Impacto indirecto ([0%, 4%] * iteracion)

Ua1SIXa IS

AEyy, = AE; =1
AE; ;1 < RE - Default

5. Evaluacién de nuevos
incumplimientos

Paso 1: Datos de entrada y configuracion.

Se cargan los datos de la matriz de exposiciones (L), el capital disponible
(AE) y el capital requerido (RE) para un periodo especifico. En esta misma
fase, se selecciona el conglomerado que inicialmente entra en default
(DEF_INIT).

Paso 2: Impacto de crédito.

Impacto Crediticio (IC): Se calcula el impacto directo que las exposiciones
en default tienen sobre los acreedores. Este impacto se calcula sumando
las exposiciones de los deudores que han caido en default.

Paso 3: Impacto por recuperaciones.

18



En el Paso 3, incluimos un efecto positivo derivado de las recuperaciones
de crédito, que mitiga el impacto inicial de las pérdidas. Esto implica que
una parte de los créditos otorgados a un nodo en incumplimiento puede
ser recuperada, reduciendo asi las pérdidas netas para los acreedores.

Si se activa el mecanismo de recuperacién, se calcula un impacto de
recuperacion (IR) basado en una proporcidon (REC_V) del impacto crediticio
(IC). Desde el punto de vista de los acreedores, representa una proporciéon
gue se puede recuperar de los activos en default.

Para efectos de este documento, solamente presentaremos resultados en
funcion de un factor fijo de recuperacién (en grilla de valores) e igual para
todos los nodos. Si bien es cierto que este supuesto parece no ser realista
debido a que cada nodo tendria distintas estrategias para garantizar sus
créditos, el analisis se puede fijar en los efectos producidos por el
contagio. De todas formas, el algoritmo desarrollado también admite la
inclusion de factores de recuperacion diferentes por cada nodol4.

Paso 4: Impacto por efecto indirecto de mercado.

En el Paso 4, introducimos el mecanismo de impacto indirecto de mercado
para modelar condiciones adversas, como ventas forzosas o mayores
costos de financiamiento. Este efecto amplifica las pérdidas iniciales al
obligar a las entidades a liquidar activos a precios desfavorables o a
financiar liquidez a un mayor costo. Al activarse este mecanismo, se
calcula un factor de impacto IF que se aplica iterativamente a toda la
matriz de exposicion, afectando a todas las entidades en funcidon de sus
vinculos con otros nodos del sistema.

Si el factor por efecto de indirecto FFS es igual a a por iteracién, en
cualquier paso t, el impacto se representara por:

14 Esta caracteristica sera explotada en trabajos posteriores.
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En otras palabras, se tratard de una proporcién de la suma de la fila
correspondiente al nodo n.

Para efectos de este documento, solamente presentaremos resultados en
funcidn de un factor fijo (en grilla de valores, desde 1 a 5 %).

Como un ejemplo practico: supongamos que el Nodo A entra en default.
El Nodo B tiene un capital de 800 MMCLP y una exposiciéon de 200 MMCLP
con A, mientras que el Nodo C tiene un capital de 600 MMCLP vy
exposiciones totales de 300 MMCLP con otros nodos (pero ninguna con
A). En el Paso 2 (impacto de crédito), solo B sufre una pérdida de 200
MMCLP, reduciendo su capital a 600 MMCLP. El Nodo C no se ve afectado
directamente. Asumiremos que no existen recuperaciones (Paso 3)

Sin embargo, en el Paso 4 (efecto indirecto de mercado), si el factor de
mercado es del 3%, ambos nodos sufren pérdidas adicionales:

e Nodo B: Pérdida adicional = 3% x 400 MMCLP (sus exposiciones
totales) = 12 MMCLP. Capital final: 588 MMCLP.

e Nodo C: Pérdida adicional = 3% x 300 MMCLP = 9 MMCLP. Capital
final: 591 MMCLP.

El algoritmo desarrollado también permite darle una dinamica a ese factor
de mercado?!>. Dicho factor se obtiene mediante la expresion

SIC;
FSpx=—-t _Fs ><(1—1)>
FFS = FSp X e< P TP ,

donde FFS es el factor de impacto indirecto de mercado, FS; es el factor
de base, FS, es un efecto positivo en funcién de las pérdidas crediticias
de la iteracion corriente sobre el total de las exposiciones del sistema

15 Igual que nota anterior.
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(#), FS, es un factor de decaimiento de las pérdidas en funcion de la
t

cantidad de iteraciones (I) de la simulacién en curso.

Paso 5: Calculo de nuevo estado y evaluacion de nuevos
incumplimientos.

Se considera el impacto total sobre un nodo i como I; =IC; — IR; + IF;. La
actualizacion del patrimonio disponible se calcula como AE;,, = AE; — .

Se evalla si el capital disponible (AE) de algun conglomerado es menor
que el capital requerido (RE) después de aplicar los impactos. Si AE;,; <
RE, el conglomerado entra en default.

Paso 6: Condiciones de salida.

El proceso iterativo continla hasta que no se detecten nuevos defaults.
Se almacenan los estados de cada iteracion para analisis posterior.

Variantes del algoritmo de contagio.
Distinguimos entre dos variantes del algoritmo de contagio.

Llamaremos como algoritmo “base” a la aplicacion de los impactos
directos por exposiciones en incumplimiento (es decir, solamente el paso
2; sin considerar los pasos 3 y 4). Este es el enfoque con el que se
compararan resultados con aquellas métricas de centralidad descritas
previamente.

Llamaremos como algoritmo “ampliado” al algoritmo con la aplicacién de
las recuperaciones y los impactos indirectos de mercado (pasos 2, 3y 4).
Para los resultados de este enfoque se presentarda un analisis de
sensibilidad de las pérdidas totales en funcion de los parametros
sefalados.

C. Resultados del algoritmo base
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Los siguientes graficos (4 y 5) muestran las situaciones promedio (por
cada nodo inicial) de los 9 trimestres considerados en el trabajo, asi como
la situacion del ultimo trimestre disponible (2024-Q1). Se observa que el
conjunto de entidades en el cuartil superior de pérdidas potenciales es
similar. Un resumen numérico de los resultados de este algoritmo por
cada nodo inicial se puede encontrar en el Anexo C. Otros detalles en
graficos se pueden encontrar en el Anexo D.

Al comparar el orden de los nodos por pérdidas potenciales, se observa
un cambio en los primeros puestos (nodos 10, 9 y 7), asi como las
posiciones 10° y 11° (nodos 12, 30). Estas diferencias pueden ser
explicadas por el crecimiento de los tamanos de balances de los actores
de la red, asi como la mayor o menor exposicidon a ciertos nodos que
generen efectos cascada subsecuentes (efectos de segunda vuelta
materializados).
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Gréfico 4. Pérdidas estimadas como porcentaje del patrimonio disponible del sistema, con el
algoritmo de contagio base. Promedio de los 9 trimestres del estudio desde 2022-Q1 hasta
2024-Q1. Eje izquierdo en porcentaje del patrimonio disponible, eje derecho como promedio de
iteraciones del algoritmo.
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Gréfico 5. Pérdidas estimadas como porcentaje del patrimonio disponible del sistema, con el
algoritmo de contagio base. Resultado a 2024-Q1. Eje izquierdo en porcentaje del patrimonio
disponible, eje derecho como promedio de iteraciones del algoritmo.

En efecto, la Tabla 5 detalla la dinamica interna de las tres mayores barras
del Grafico 5. En estos casos, la cascada concluye en dos a tres
iteraciones. Un patrén comun es la aparicion de un conjunto de nodos
repetidos en las primeras olas (en particular en la iteracién 1), lo que
obedece, en parte, a instituciones con menor holgura patrimonial y alta
exposicion a los iniciadores centrales. Asi pues, las caidas configuran
subconjuntos de nodos similares y recurrentes.
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Pérdida
ELTGITELE]

Pérdida (% (%
Patrimonio Pérdida Patrimonio
Default Nuevos Pérdida Disponible Acumulada Disponible
Periodo inicial Iteracion Nuevos defaults (nodos) defaults (MMCLP) Sistema) (MMCLP) Sistema)
0 7 1 2.835.762 5,8 2.835.762 5,8
1 64, 44, 62, 54, 55 5 1.822.125 3,7 4.657.888 9,5
7
2 30, 24, 3, 1, 43, 28, 56, 29 8 338.772 0,7 4.996.659 10,2
3 25 1 14 0,0 4.996.673 10,2
V] 10 1 2.561.219 5,2 2.561.219 5.2
2024-Q1 1 64, 24, 62, 54, 55 5 1.865.012 3,8 4.426.232 9,0
10
2 30, 3, 44, 1, 43, 25, 28, 36, 10 355.278 07| 4.781.509 9,8
52,29
3 15 1 - - 4.781.509 9,8
o 9 1 2.385.618 4,9 2.385.618 4,9
9 1 gg' 24, 43, 28, 56, 62, 54, 8 417.034 0,9 2.802.651 5,7
2 3,29 2 11.475 0,0 2.814.126 5,7

Tabla 5. Detalle de las iteraciones de los tres nodos mas importantes segun el algoritmo base.

Ademads, extendemos el andlisis de correlaciones propuesto
anteriormente para las métricas de centralidad, incluyendo el impacto
crediticio calculado con el algoritmo base, cuyos resultados se presentan
en la Tabla 6.

Impacto de
Eigenvector Eigenvector Eigenvector PageRank PageRank PageRank crédito
pasivos activos promedio pasivos activos promedio  DebtRank In Degree Out Degree (basico)
Eigenvector pasivos 1,00
Eigenvector activos 0,34 1,00
Eigenvector promedio 0,83 0,81 1,00
PageRank pasivos 0,92 0,47 0,86 1,00
PageRank activos 0,59 0,88 0,89 0,67 1,00
PageRank promedio 0,84 0,73 0,96 0,92 0,90 1,00
DebtRank 0,91 0,54 0,89 0,93 0,77 0,93 1,00
In Degree 0,84 0,59 0,88 0,91 0,75 0,91 0,93 1,00
Out Degree 0,54 0,44 0,60 0,57 0,65 0,66 0,59 0,59 1,00
Impacto de crédito (basico) 0,93 0,37 0,80 0,85 0,65 0,83 0,92 0,80 0,55 1,00

Tabla 6. Ampliacién de la Tabla 3. Matriz de correlacion entre métricas de centralidad e impacto
de crédito del algoritmo base.

De aca, destacamos que las mayores correlaciones del impacto crediticio
se presentan con las medidas de centralidad Eigenvector del pasivo y
DebtRank.

D. Resultados del algoritmo ampliado
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Mediante los trabajos de caracterizacion de los nodos de la red mediante
meétricas de centralidad, y los resultados del algoritmo base, con cierto
nivel de confianza podemos identificar un subconjunto de la red que es
de mayor importancia, evaluados segun sus influencias derivadas de las
conexiones financieras y el eventual impacto que tendria una situacion de
estrés o incumplimiento de los nodos sobre el sistema.

En esta seccion, se evaluaran escenarios adicionales que pueden mitigar
o amplificar el efecto sistémico de estos nodos ya identificados, mediante
el uso de extensiones al modelo de algoritmo de contagio. Esencialmente,
nos preguntamos qué tan sensibles a estos factores adicionales pueden
ser las pérdidas del sistema.

Ademas del efecto directo de las exposiciones entre nodos (Paso 1 del
algoritmo base descrito en IV.B, consideramos dos mecanismos
adicionales para capturar una dinamica de contagio mas realista, los
pasos 3 y 4 descritos en las fases del algoritmo. Debido a la incorporacién
de estos pasos, a esta version de las simulaciones la llamamos “algoritmo
ampliado”.

Los resultados de estas simulaciones se presentan en la Grafico 6 y 7.
Debido a la inclusidn de dos variables adicionales que afectan al monto
de las pérdidas estimadas por el algoritmo, hemos optado por mapas de
calor para efectos de visualizacion de los resultados. Ademas del
instrumento grafico, incluimos un estudio de sensibilidades de los
parametros sobre las pérdidas de cada nodo, los cuales se estudian a
través de una regresion lineal simple, los cuales se muestran en la Tabla
7.

Al igual que en vistas anteriores, se muestran los resultados del cuartil
superior (en este caso, ordenados por pérdidas estimadas en el algoritmo
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base), tanto en los mapas de calor, como para efectos de la muestra que
se estima en las regresiones?®.

7
/’,—';\ e Resultado del
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Gréfico 6. Ejemplo de mapa de calor de las pérdidas estimadas sobre el patrimonio disponible
del sistema, por algoritmo de contagio y grilla de parametros. El titulo del mapa indica el nodo
en default inicial (en este caso, 7).

Los mapas de calor permiten una inspeccién visual de los distintos
escenarios planteados en el algoritmo ampliado. Del Grafico 7, se pueden
distinguir por lo menos dos patrones de colores/pérdidas. El primero,
donde las pérdidas acrecientan de manera gradual entre los parametros,
dando una figura de colores “en diagonal”. Un ejemplo de este patron es
el nodo 9 (detalle en Grafico 6). El segundo, donde los colores tienen un
cambio de color “en horizontal”, por lo que se distingue un umbral en el
efecto indirecto de mercado que hace que las pérdidas aumenten de
manera considerable. Este es el caso, por ejemplo, de los nodos 3 y 4.
Existen ademas casos intermedios entre estos dos patrones.

16 Se ha optado por recortar los datos que van como entrada de las regresiones, ya que,
al incorporar nodos con pérdidas originalmente menores, los parametros de las
estimaciones pierden significancia estadistica. Esto puede deberse a saltos explosivos en
las pérdidas por el disefo del algoritmo. En otras palabras, nos quedamos con el cuartil
mas central del sistema.
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Gréafico 7. Mapas de calor de las pérdidas por algoritmo de contagio, segun default inicial y
parametros en ejes. AE = Patrimonio disponible.

Los graficos 8 y 9 dan cuenta de la relacion entre las pérdidas resultantes
del algoritmo ampliado y las cantidades de nodos afectados e iteraciones.
Si bien la relacién se da por construccién del algoritmo, se aprecia que,
en los casos mas extremos, se pueden afectar mas 20 nodos, en mas de
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10 iteraciones. Esto se contrasta con el algoritmo base, en el que pueden
caer cerca alrededor de 5 nodos, en entre 2 y 3 iteraciones.

Cantidad de nodos afectados por default inicial
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Grafico 8. Mapas de calor de la cantidad de nodos afectados por el algoritmo de contagio, segun
default inicial y parametros en ejes.
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Cantidad de iteraciones por default inicial
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Gréfico 9. Mapas de calor de la cantidad de iteraciones por el algoritmo de contagio, segtn default
inicial y parametros en ejes.
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Pérdidas del algoritmo ampliado vs escenario base
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Grafico 10. Mapas de calor de la cantidad de iteraciones por el algoritmo de contagio, segtn default
inicial y parametros en ejes.

El grafico 10 muestra las pérdidas del algoritmo ampliado como
porcentaje de cambio respecto al escenario del algoritmo base. En él se
aprecia que las pérdidas sobre el sistema resultante de cada nodo siguen
tres regiones distinguibles, dadas las combinaciones particulares de
parametros: una zona azul donde se amortiguan las pérdidas, una zona
mas blanca donde las pérdidas son porcentualmente similares, y una zona
roja, donde se amplifican las pérdidas.

Para evaluar la sensibilidad con un enfoque mas estadistico que
meramente Optico, adicionalmente hemos estimado mediante regresiones
lineales ordinarias los efectos de los parametros sobre las pérdidas
potenciales. Los estimadores presentados son interacciones de variables

31



continuas (factores de recuperacion o indirecto de mercado) con
indicadores dicotdmicos para representar al nodo de default inicial. Los
modelos varian en los conjuntos de otras covariables utilizadas. De los
resultados presentados, los criterios de informacion se inclinan por el
modelo 517,

Una forma general de representar los modelos descritos es:

Pérdidas totales
8 (Pérdidas esc. base) =@t B DM+ DR +yQ + e
Donde B,D es una representacién matricial de los estimadores por efecto
indirecto de mercado M por cada default inicial, B,D es una representacién
matricial de los efectos de recuperaciones R por cada default inicial, y yQ
es una representacion matricial de otras covariables de controlc.

Las hipotesis nulas de las pruebas en la tabla 6 siguen el patrén Hy: gD =
0 6 Hy: B,D = 0. Esto quiere decir que las pérdidas totales del sistema son
insensibles a la interaccidén del default de un nodo inicial con el efecto
indicado (mercado o recuperacion).

Respecto a las sensibilidades por el efecto indirecto de mercado, los
cuatro primeros nodos (6, 7, 9 y 10) que mas pérdidas potenciales
generarian en caso de default en el algoritmo base, son también aquellos
menos sensibles al parametro en comento. Es decir, sus pérdidas
potenciales son modificadas en menor medida por este parametro, en
comparacioén a otros nodos, a partir de su escenario base. Por el contrario,
los nodos mas sensibles son aquellos que presentan patron “en

17 Se puede advertir que los pardmetros estimados entre los modelos 4 y 5 son
practicamente iguales. Esto no es un error; las diferencias son del orden de decimales
muy pequenos. Al mismo tiempo, la inclusion de los efectos fijos por default inicial
parecer ser poco efectivo o eficiente, a pesar de la mejora en los criterios de informacion.
Esto podria deberse a que dichos efectos estan capturados en gran medida por las
variables de interaccidén con los factores adicionales.
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horizontal” (3, 4, 11 y 30) en sus mapas de calor, afectando a sus

pérdidas potenciales en una mayor medida.

En cuanto a las sensibilidades por efectos de recuperacion, los nodos 2,
6, 7 y 31 son los mas sensibles al parametro de recuperacién, reduciendo
en mayor medida (respecto a otros nodos) las pérdidas potenciales. Los
nodos 3, 11, 12 y 30 presentan las menores sensibilidades, con el efecto

opuesto.

Modelo: f(Variables) = Pérdidas totales
Variable

Default inicial

Efecto de mercado indir.

Modelo 1

Estimado p-valor

Modelo 2

Estimado p-valor

Modelo 3

Estimado p-valor

Modelo 4

Estimado  p-valor

37,215

Modelo 5

Estimado p-valor

37,215

36,814

36,814

34,232

34,232

29,639

29,639

Factor de recuperacion

ANEEENE NN AN NN EHENE

Otras covariadas

S6lo constante

Constante, mas
interacciones:

Ef.mercado. *

Como modelo 2,
mas eigenvector

Como modelo 3, mas
efectos fijos por

Como modelo 3, més
efectos fijos por

Eigenvector prom; rom. (sin defaultinicialy por
_prom. ( defaultinicial. niciatyp
interactuar) periodo.
Fact.Recup *
Eigenvector prom.

AlC 88.144 AlC 88.048 AlIC 87.934 AlIC 87.806 AlIC 87.236

BIC 88.386 BIC 88.307 BIC 88.201 BIC 88.178 BIC 87.672
R ajustado| 0,4964 R ajustado| 0,4985 R? ajustado| 0,5009 R"2ajustado| 0,5039 R"2ajustado| 0,5158

Tabla 7. Modelos de regresién lineal ordinaria para las pérdidas, segun interacciones entre
defaults iniciales con los parametros del algoritmo ampliado. n=23.688.
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V. Conclusiones

El analisis confirma una alta consistencia en la identificacion de nodos
sistémicamente importantes dentro del sistema financiero chileno. Se
observé una correlacién superior a 0,85 entre las métricas de centralidad
(DebtRank) y las pérdidas estimadas por el algoritmo de contagio. Esta
convergencia valida la robustez de los resultados, sugiriendo que la
deteccion de instituciones criticas no depende de la metodologia
especifica, sino que responde a vulnerabilidades estructurales latentes en
la red de conglomerados.

Este trabajo expande la caja de herramientas para el analisis de riesgo
sistémico al integrar bancos y aseguradoras en un uUnico modelo de red,
superando el enfoque tradicional centrado exclusivamente en la banca. La
principal innovacién radica en el desarrollo de un algoritmo de contagio
parametrizable que cuantifica explicitamente efectos de segunda vuelta,
mecanismos de recuperacion y shocks indirectos de mercado. Esto
demuestra que las métricas estaticas y las simulaciones dindmicas, mas
que sustitutos, son enfoques complementarios que ofrecen distintos
niveles de granularidad.

Para la supervision prudencial, estos resultados permiten una focalizacion
mas eficiente de los recursos fiscalizadores sobre los nodos de mayor
centralidad. El algoritmo desarrollado actia como un motor
complementario para pruebas de estrés (stress testing), facilitando la
simulacién de escenarios de crisis y el anadlisis de sensibilidad ante
variaciones en tasas de recuperacion o liquidez de mercado, insumos
criticos para el diseino de politicas macroprudenciales.

El modelo actual opera como un sistema cerrado de exposiciones directas
locales, excluyendo activos externos (bonos soberanos, corporativos
extranjeros) y derivados, lo que limita la captura de contagios por shocks
exdgenos comunes. Futuras investigaciones deberan incorporar estas
dimensiones, idealmente calibrando los parametros de recuperacion con
datos historicos especificos por instrumento. Asimismo, se sugiere
evolucionar hacia una estructura de redes multicapa que distinga entre
34
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tipos de activos (créditos, bonos, acciones) hasta nivel de ISIN,
permitiendo modelar dindmicas de transmision de riesgo mas complejas
y desagregar el impacto de mercado en fendmenos especificos como
ventas forzosas o costos de fondeo.
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Anexos

A. Visualizacion de la red financiera
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Ilustracion 4. Visualizacién de la red financiera a marzo 2024. Tamafo de nodo segtn holgura
patrimonial (disponible menos requerido). Grosor de los vinculos en funcién del tamafio de la
exposicion. Cifras en MMCLP.
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B. Caracteristicas de los nodos

‘ Emisiones/Pasivos ‘ Acreencias/Activos

Caracteristicas

Nodo Banco glea.ucll’(ca)s Otras Promedio Mediana| Promedio Mediana
1 v 27 33 986.099 997.422
2 v v 871.151 847.345 496.779 496.757
3 v 70.828 81.317 459.823 508.850
4 v 142.720 142.100 19.328 18.498
5 v 44.765 43.935 41.994 22.371
6 v 2.224.188 | 2.242.352 107.681 101.242
7 v 3.860.496 | 4.009.738 | 1.683.699| 1.660.645
8 v 18.949 18.492 190.394 194.810
9 v v 2.673.803 | 2.663.605| 1.982.281 .033.869

10 v 2.230.533 | 2.430.752 81.777 64.725
11 v 134.883 136.339 69.283 85.873
12 v v v 565.229 604.734 243.141 230.034
14 v 0 0 - -
15 v 15 18 149.444 152.811
16 v 6 5 126.064 135.020
17 v 1 1 24.014 25.400
18 v 1.919 19 - -
19 v 10 6 - -
22 v v 775.655 744.990| 1.091.530| 1.159.165
23 v 0 0 - -
24 v 37.185 44.657 597.899 601.363
25 v 10 11 121.825 116.273
27 v 8 7 59.955 59.199
28 v 5 5 308.379 316.073
29 v 1 0 316.444 311.806
30 v v 465.684 465.282| 1.769.826| 1.781.789
31 v v v 793.323 732.634 567.115 528.712
32 v 1.616 32 - -
33 v 20.390 986.099 - -
34 v 1.911 2.003 324.225 317.590
38 v 0 0 2.504 2.518
39 v 17 17 1.986 1.986
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Caracteristicas Emisiones/Pasivos ‘ Acreencias/Activos

Nodo | Banco g:]g-udr?)s Otras Promedio Mediana| Promedio Mediana
40 v 9 7 5.571 5.160
41 v 5 4 98.713 98.063
43 v 9 7 12.103 12.817
44 v 2.403 1.753 2.906 1.755
45 v 28 29 16.117 16.849
46 v 7 9 - -
47 v 15 6 - -
48 v 84.030 84.027 206.234 216.211
49 v 4 4 3.990 4.021
50 v 1 1 5.431 5.423
51 v 997 1.001 4.409 4.484
52 v 1 1 1.245 1.192
53 v 330 144 5.979 6.464
54 v 0 0 58.866 54.435
55 v 0 0 50.527 50.712
56 v 4 1 200.625 200.233
57 v 0 0 10.213 6.480
58 v 803 803 6.343 6.067
59 v 6 3 958 920
60 v 1 1 2.400 2.313
61 v 1 1 6.667 8.104
62 v 64 2 1.850 1.833
63 v v 1.539.394 | 1.545.924 | 1.732.678 | 1.780.305
64 v 1.893.239 | 1.892.029 | 4.020.290 | 4.245.148
65 v 19.057 17.395 40.666 31.081
66 v 9.837 9.837 - -

Tabla 8. Caracteristicas de los nodos y montos de sus posiciones totales. Cifras en MMCLP.
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C. Resultados del algoritmo base

Impacto

(MMCLP) Periodo B

Nodo [ 2022Q1 2022Q2 2022 Q3 2022 Q4 2023 Q1 2023 Q2 2023 Q3 2023 Q4 2024 Q1 Promedio
10 1.153.923 3.988.267 4.205.779 2.299.609 4.854.810 5.022.772 2.657.054 2.458.779 4.781.509 3.491.389
9 1.952.652 2.362.010 3.689.572 5.102.784 5.135.435 3.399.995 3.012.309 2.883.530 2.814.126 3.372.490
7 3.972.717 4.410.822 2.156.195 2.616.088 2.710.183 2.948.125 2.604.955 2.780.808 4.996.673 3.244.063
6 4.188.856 4.492.598 2.663.568 2.792.731 2.523.952 2.541.862 2.569.421 2.728.270 2.713.411 3.023.852
64  1.772.865 1.784.460 1.764.599 2.056.729 2.117.460 2.167.197 1.922.154 1.901.188 1.874.034 1.928.965
63  1.306.898 1.380.296 1.427.542 1.554.483 1.560.295 1.641.119 1.441.797 1.745.442 1.800.876 1.539.861

2 738.547 715.818 765.172 807.857 808.084 909.438 918.418 877.199 955.540 832.897
31 1.015.302 913.651 692.429 787.560 744.049 724.341 702.434 719.639 703.997 778.156
22 637.480 614.271 670.649 655.678 608.995 683.139 842.971 773.133 699.159 687.275
12 836.842 912.772 841.487 742.926 604.735 355.203 291.688 262.701 239.210 565.285
30 442,897 455.059 446.350 404.655 330.421 378.604 411.449 426.411 395.599 410.161
192.250 227.672 142.352 148.901 137.697 111.127 119.056 157.182 171.416 156.406

11 137.580 151.264 127.201 151.645 136.340 121.272 116.468 139.540 133.151 134.940
81.317 84.130 89.643 84.481 83.866 75.702 61.214 41.415 36.198 70.885

5 63.770 58.894 54.125 49.163 43.936 41.890 30.913 39.097 21.610 44.822
24 44.466 44.663 45.544 45.568 19.066 18.923 18.910 51.008 47.028 37.242
65 18.723 31.036 15.892 21.873 16.042 16.429 17.566 17.066 17.395 19.114
8 22.301 21.770 19.691 18.744 18.954 17.738 18.000 16.764 17.090 19.006
44 12 1.677 1.953 2.005 2.771 4.779 4.107 1.699 3.133 2.460
66 0 6 252 10.089 0 0 0 0 0 1.150
51 0 6 252 1.395 1.089 1.035 967 909 841 721
53 0 6 540 823 1 1 1 988 789 350
58 0 6 252 252 0 0 0 0 803 146
34 6 367 258 263 7 8 6 7 11 104
45 17 20 271 285 34 40 22 29 46 85
1 6 21 265 272 37 42 33 35 45 84
47 6 9 256 256 4 16 19 71 9 72
15 7 18 274 272 19 21 21 5 8 71
39 0 6 260 268 19 17 19 23 16 70
25 7 17 263 257 11 9 15 9 14 67
40 6 21 263 260 8 13 8 8 9 66
43 6 13 263 259 6 6 14 7 17 66
27 4 12 257 270 6 11 6 10 10 65
46 1 6 264 262 8 4 9 9 9 64
16 6 13 257 262 5 5 6 9 3 63
59 1 6 252 252 4 2 11 17 10 62
41 6 16 253 257 2 7 3 4 4 61
49 6 13 253 252 4 7 6 4 4 61
56 1 33 254 253 1 2 1 1 3 61
48 4 12 257 254 5 6 1 2 0 60
28 0 6 252 252 3 5 5 8 8 60
50 0 6 253 254 3 2 2 1 1 58
17 0 6 252 255 1 2 3 0 1 58
52 0 6 253 254 1 1 1 2 2 58
61 0 6 252 252 1 5 1 1 2 58
62 3 11 252 252 0 0 0 0 0 58
60 0 6 254 253 2 2 1 0 1 58
29 1 7 253 252 1 1 1 0 1 57
57 0 6 253 252 1 1 0 0 0 57
55 0 6 252 252 0 0 0 0 0 57
54 0 6 252 252 1 0 1 0 0 57
38 0 6 252 252 0 0 0 0 0 57
37 0 6 252 252 0 0 0 0 0 57
36 0 6 252 252 0 0 0 0 0 57
13 0 6 252 252 0 0 0 0 0 57
26 0 6 252 252 0 0 0 0 0 57
42 0 6 252 252 0 0 0 0 0 57
67 0 6 252 252 0 0 0 0 0 57

Tabla 9. Impactos de crédito (pérdidas) calculados con el algoritmo de contagio base. Todos los
nodos y periodos. Cifras en MMCLP.
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D. Graficos adicionales sobre el algoritmo base
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Gréfico 11. Impacto promedio del algoritmo base por trimestre. Cifras en MMCLP.

Histogramas de los impactos de crédito por trimestre (> MMCLP 500)
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Grafico 12. Histograma de las pérdidas segun el algoritmo base, por trimestre. Cifras en MMCLP.
Linea punteada representa el percentil 99.
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